Extensions 1→N→G→Q→1 with N=C2 and Q=C23.81C23

Direct product G=N×Q with N=C2 and Q=C23.81C23
dρLabelID
C2×C23.81C23128C2xC2^3.81C2^3128,1123


Non-split extensions G=N.Q with N=C2 and Q=C23.81C23
extensionφ:Q→Aut NdρLabelID
C2.1(C23.81C23) = C24.631C23central extension (φ=1)128C2.1(C2^3.81C2^3)128,173
C2.2(C23.81C23) = C24.632C23central extension (φ=1)128C2.2(C2^3.81C2^3)128,174
C2.3(C23.81C23) = C24.634C23central extension (φ=1)128C2.3(C2^3.81C2^3)128,176
C2.4(C23.81C23) = C24.635C23central extension (φ=1)128C2.4(C2^3.81C2^3)128,177
C2.5(C23.81C23) = (C2×C8).1Q8central stem extension (φ=1)128C2.5(C2^3.81C2^3)128,815
C2.6(C23.81C23) = C2.(C83Q8)central stem extension (φ=1)128C2.6(C2^3.81C2^3)128,816
C2.7(C23.81C23) = (C2×C8).24Q8central stem extension (φ=1)128C2.7(C2^3.81C2^3)128,817
C2.8(C23.81C23) = (C2×C4).26D8central stem extension (φ=1)128C2.8(C2^3.81C2^3)128,818
C2.9(C23.81C23) = (C2×C4).21Q16central stem extension (φ=1)128C2.9(C2^3.81C2^3)128,819
C2.10(C23.81C23) = C4.(C4⋊Q8)central stem extension (φ=1)128C2.10(C2^3.81C2^3)128,820
C2.11(C23.81C23) = M4(2).Q8central stem extension (φ=1)64C2.11(C2^3.81C2^3)128,821
C2.12(C23.81C23) = M4(2).2Q8central stem extension (φ=1)64C2.12(C2^3.81C2^3)128,822

׿
×
𝔽